Tuesday, September 11, 2012

Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy



In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction.

Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors

Monday, August 27, 2012

Wednesday, August 8, 2012

Structured spheres generated by an in-fibre fluid instability

Fluid capillary instabilities in multimaterial fibres as a route to size-tunable particle fabrication.From drug delivery1, 2 to chemical and biological catalysis3 and cosmetics4, the need for efficient fabrication pathways for particles over a wide range of sizes, from a variety of materials, and in many different structures has been well established5. Here we harness the inherent scalability of fibre production6 and an in-fibre Plateau–Rayleigh capillary instability7 for the fabrication of uniformly sized, structured spherical particles spanning an exceptionally wide range of sizes: from 2 mm down to 20 nm. Thermal processing of a multimaterial fibre8 controllably induces the instability9, resulting in a well-ordered, oriented emulsion10 in three dimensions. The fibre core and cladding correspond to the dispersed and continuous phases, respectively, and are both frozen in situ on cooling, after which the particles are released when needed. By arranging a variety of structures and materials in a macroscopic scaled-up model of the fibre, we produce composite, structured, spherical particles, such as core–shell particles, two-compartment ‘Janus’ particles11, and multi-sectioned ‘beach ball’ particles. Moreover, producing fibres with a high density of cores allows for an unprecedented level of parallelization. In principle, 108 50-nm cores may be embedded in metres-long, 1-mm-diameter fibre, which can be induced to break up simultaneously throughout its length, into uniformly sized, structured spheres.

Tuesday, August 7, 2012

Single siRNA Nanocapsules for Enhanced RNAi Delivery

Abstract Image














Synthetic siRNA has been considered as a highly promising therapeutic agent for human diseases. However, clinical use of siRNA has been hampered by instability in the body and inability to deliver sufficient RNA interference compounds to the tissues or cells. To address this challenge, we present here a single siRNA nanocapsule delivery technology, which is achieved by encapsulating a single siRNA molecule within a degradable polymer nanocapsule with a diameter around 20 nm and positive surface charge. As proof-of-concept, since CCR5 is considered a major silencing target of HIV therapy, CCR5–siRNA nanocapsules were delivered into 293T cells and successfully downregulated the CCR5 RNA fused with mCherry reporter RNA. In the absence of human serum, nanocapsules and lipofectamine silenced expression of CCR5–mCherry expression to 8% and 15%, respectively. Such nanocapsules maintain the integrity of siRNA inside even after incubation with ribonuclease and serum for 1 h; under the same conditions, siRNA is degraded in the native form or when formulated with lipofectamine. In the presence of serum, CCR5–siRNA nanocapsules knocked down CCR5–mCherry expression to less than 15% while siRNAs delivered through lipofectamine slightly knocked down the expression to 55%. In summary, this work provides a novel platform for siRNA delivery that can be developed for therapeutic purposes.

Cable-Type Flexible Lithium Ion Battery Based on Hollow Multi-Helix Electrodes


Thumbnail image of graphical abstractThe mechanical flexibility of a cable-type battery reaches levels far beyond what is possible with conventional designs. The hollow-spiral (helical) multi-helix anode architecture is critical to the robustness under mechanical stress and facilitates electrolyte wetting of the battery components. This design enables the battery to reliably power an LED screen or an MP3 player even under severe mechanical twisting and bending.

Monday, August 6, 2012

A Yolk–Shell Nanoreactor with a Basic Core and an Acidic Shell for Cascade Reactions

Thumbnail image of graphical abstractHollow nanoparticles with movable core, which have an acidic and a basic shell core were, using a selective etching method supported organosilane prepared and used as efficient nanoreactors in catalysis of a Deacetalisierungs / Henry cascade reaction with high activity and selectivity. This strategy is promising for the design of multi-functional nanoreactors for cascade reactions.

Bioactive Polymeric Metallosomes Self-Assembled through Block Copolymer–Metal Complexation

Abstract ImageSpontaneous formation of polymeric metallosomes with uniform size ( 100 nm) was found to occur in aqueous medium through the reaction of an anticancer agent, (1,2-diaminocyclohexane)platinum(II) (DACHPt), with a Y-shaped block copolymer of ω-cholesteroyl-poly(l-glutamic acid) and two-armed poly(ethylene glycol) (PEGasus-PLGA-Chole). Circular dichroism spectrum measurements revealed that the PLGA segment forms an α-helix structure within the metallosomes, suggesting that secondary-structure formation of metallocomplexed PLGA segment may drive the self-assembly of the system into vesicular structure. These metallosomes can encapsulate water-soluble fluorescent macromolecules into their inner aqueous phase and eventually deliver them selectively into tumor tissues in mice, owing to the prolonged blood circulation. Accordingly, fluorescent imaging of the tumor was successfully demonstrated along with an appreciable antitumor activity by DACHPt moieties retained in the vesicular wall of the metallosomes, indicating the potential of metallosomes as multifunctional drug carriers.

Friday, August 3, 2012

In Vivo Encapsulation of Nucleic Acids Using an Engineered Nonviral Protein Capsid

Abstract Image


In Nature, protein capsids function as molecular containers for a wide variety of molecular cargoes. Such containers have great potential for applications in nanotechnology, which often require encapsulation of non-native guest molecules. Charge complementarity represents a potentially powerful strategy for engineering novel encapsulation systems. In an effort to explore the generality of this approach, we engineered a nonviral, 60-subunit capsid, lumazine synthase from Aquifex aeolicus (AaLS), to act as a container for nucleic acid. Four mutations were introduced per subunit to increase the positive charge at the inner surface of the capsid. Characterization of the mutant (AaLS-pos) revealed that the positive charges lead to the uptake of cellular RNA during production and assembly of the capsid in vivo. Surprisingly, AaLS-pos capsids were found to be enriched with RNA molecules approximately 200–350 bases in length, suggesting that this simple charge complementarity approach to RNA encapsulation leads to both high affinity and a degree of selectivity. The ability to control loading of RNA by tuning the charge at the inner surface of a protein capsid could illuminate aspects of genome recognition by viruses and pave the way for the development of improved RNA delivery systems.

Tuesday, July 31, 2012

One-Step Facile Surface Engineering of Hydrophobic Nanocrystals with Designer Molecular Recognition

Abstract Image 
High quality nanocrystals have demonstrated substantial potential for biomedical applications. However, being generally hydrophobic, their use has been greatly limited by complicated and inefficient surface engineering that often fails to yield biocompatible nanocrystals with minimal aggregation in biological fluids and active targeting toward specific biomolecules. Using chimeric DNA molecules, we developed a one-step facile surface engineering method for hydrophobic nanocrystals. The procedure is simple and versatile, generating individual nanocrystals with multiple ligands. In addition, the resulting nanocrystals can actively and specifically target various molecular addresses, varying from nucleic acids to cancer cells. Together, the strategy developed here holds great promise in generating critical technologies needed for biomedical applications of nanocrystals.

The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite

Comparison of collagen density and organization between in vitro models and bone.Yan Wang, Thierry Azaïs, Marc Robin, Anne Vallée, Chelsea Catania, Patrick Legriel, Gérard Pehau-Arnaudet, Florence Babonneau, Marie-Madeleine Giraud-Guille & Nadine Nassif 

The involvement of collagen in bone biomineralization is commonly admitted, yet its role remains unclear. Here we show that type I collagen in vitro can initiate and orientate the growth of carbonated apatite mineral in the absence of any other vertebrate extracellular matrix molecules of calcifying tissues. We also show that the collagen matrix influences the structural characteristics on the atomic scale, and controls the size and the three-dimensional distribution of apatite at larger length scales. These results call into question recent consensus in the literature on the need for Ca-rich non-collagenous proteins for collagen mineralization to occur in vivo. Our model is based on a collagen/apatite self-assembly process that combines the ability to mimic the in vivo extracellular fluid with three major features inherent to living bone tissue, that is, high fibrillar density, monodispersed fibrils and long-range hierarchical organization.

Wednesday, July 25, 2012

Can Polymersomes Form Colloidosomes?

Abstract Image 
Kate L. Thompson*Pierre Chambon, Robert Verber, and Steven P. Armes*


Hydroxy-functionalized polymersomes (or block copolymer vesicles) were prepared via a facile one-pot RAFT aqueous dispersion polymerization protocol and evaluated as Pickering emulsifiers for the stabilization of emulsions of n-dodecane emulsion droplets in water. Linear polymersomes produced polydisperse oil droplets with diameters of 50 μm regardless of the polymersome concentration in the aqueous phase. Introducing an oil-soluble polymeric diisocyanate cross-linker into the oil phase prior to homogenization led to block copolymer microcapsules, as expected. However, TEM inspection of these microcapsules after an alcohol challenge revealed no evidence for polymersomes, suggesting these delicate nanostructures do not survive the high-shear emulsification process. Thus the emulsion droplets are stabilized by individual diblock copolymer chains, rather than polymersomes. Cross-linked polymersomes (prepared by the addition of ethylene glycol dimethacrylate as a third comonomer) also formed stable n-dodecane-in-water Pickering emulsions, as judged by optical and fluorescence microscopy. However, in this case the droplet diameter varied from 50 to 250 μm depending on the aqueous polymersome concentration. Moreover, diisocyanate cross-linking at the oil/water interface led to the formation of well-defined colloidosomes, as judged by TEM studies. Thus polymersomes can indeed stabilize colloidosomes, provided that they are sufficiently cross-linked to survive emulsification.