Thursday, May 23, 2013



Complementary coiled coil forming lipidated peptides embedded in liposomal membranes are able to induce rapid, controlled, and targeted membrane fusion. Traditionally, such fusogenic liposomes are prepared by mixing lipids and lipidated peptides in organic solvent (e.g., chloroform). Here we prepared fusogenic liposomes in situ, i.e., by addition of a lipidated peptide solution to plain liposomes. As the lipid anchor is vital for the correct insertion of lipidated peptides into liposomal membranes, a small library of lipidated coiled coil forming peptides was designed in which the lipid structure was varied. The fusogenicity was screened using lipid and content mixing assays showing that cholesterol modified coiled coil peptides induced the most efficient fusion of membranes. Importantly, both lipid and content mixing experiments demonstrated that the in situ modification of plain liposomes with the cholesterol modified peptides yielded highly fusogenic liposomes. This work shows that existing membranes can be activated with lipidated coiled coil forming peptides, which might lead to highly potent applications such as the fusion of liposomes with cells.

Thursday, May 9, 2013

Polymer Microcapsules with Programmable Active Release



We present a new type of microcapsule programmed with a tunable active release mechanism. The capsules are triggered by a plasticizing stimulus that induces a phase change transition of the polymeric membrane from a solid to a fluidized form; thereafter, the cargo is actively driven out of the capsule through a defect at the capsule wall with controllable release kinetics. Tuning the degree of membrane fluidity by tailoring the amount of plasticizing stimulus present allows us to obtain temporal variation of the release kinetics from a subsecond abrupt burst release to a slow sustained release of encapsulant over many minutes. Moreover, we demonstrate tuning of the collective capsule triggering response by adjusting stimulus content, polymer molecular weight, and capsule membrane thickness. For this model system, we use a microfluidic approach to fabricate polystyrene capsules triggered by a toluene stimulus. However, this active release approach is general and is applicable to diverse polymeric capsule systems; this versatility is demonstrated by extension of our trigger-release scheme to capsules fabricated from a rubberlike block copolymer. The utility of our technique further enhances the potential of these active release capsules for practical application.